Ela a Note on Minimum Rank and Maximum Nullity of Sign Patterns
نویسنده
چکیده
The minimum rank of a sign pattern matrix is defined to be the smallest possible rank over all real matrices having the given sign pattern. The maximum nullity of a sign pattern is the largest possible nullity over the same set of matrices, and is equal to the number of columns minus the minimum rank of the sign pattern. Definitions of various graph parameters that have been used to bound maximum nullity of a zero-nonzero pattern, including path cover number and edit distance, are extended to sign patterns, and the SNS number is introduced to usefully generalize the triangle number to sign patterns. It is shown that for tree sign patterns (that need not be combinatorially symmetric), minimum rank is equal to SNS number, and maximum nullity, path cover number and edit distance are equal, providing a method to compute minimum rank for tree sign patterns. The minimum rank of small sign patterns is determined.
منابع مشابه
A note on minimum rank and maximum nullity of sign patterns
The minimum rank of a sign pattern matrix is defined to be the smallest possible rank over all real matrices having the given sign pattern. The maximum nullity of a sign pattern is the largest possible nullity over the same set of matrices, and is equal to the number of columns minus the minimum rank of the sign pattern. Definitions of various graph parameters that have been used to bound maxim...
متن کاملEla Minimum Rank, Maximum Nullity, and Zero Forcing Number of Simple Digraphs
A simple digraph describes the off-diagonal zero-nonzero pattern of a family of (not necessarily symmetric) matrices. Minimum rank of a simple digraph is the minimum rank of this family of matrices; maximum nullity is defined analogously. The simple digraph zero forcing number is an upper bound for maximum nullity. Cut-vertex reduction formulas for minimum rank and zero forcing number for simpl...
متن کاملEla on the Minimum Rank of Not Necessarily Symmetric Matrices: a Preliminary Study∗
The minimum rank of a directed graph Γ is defined to be the smallest possible rank over all real matrices whose ijth entry is nonzero whenever (i, j) is an arc in Γ and is zero otherwise. The symmetric minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for i = j) is nonzero whenever {i, j} is an edge in G and is zero o...
متن کاملEla Note on Positive Semidefinite Maximum Nullity and Positive Semidefinite Zero Forcing Number of Partial 2-trees
The maximum positive semidefinite nullity of a multigraph G is the largest possible nullity over all real positive semidefinite matrices whose (i, j)th entry (for i 6= j) is zero if i and j are not adjacent in G, is nonzero if {i, j} is a single edge, and is any real number if {i, j} is a multiple edge. The definition of the positive semidefinite zero forcing number for simple graphs is extende...
متن کاملEla Positive Semidefinite Maximum Nullity and Zero Forcing Number
The zero forcing number Z(G) is used to study the minimum rank/maximum nullity of the family of symmetric matrices described by a simple, undirected graph G. The positive semidefinite zero forcing number is a variant of the (standard) zero forcing number, which uses the same definition except with a different color-change rule. The positive semidefinite maximum nullity and zero forcing number f...
متن کامل